Philadelphia University + Thomas Jefferson University

Iacovitti, Lorraine

< Back


Lorraine Iacovitti, PhD

Lorraine Iacovitti, PhD

Contact Dr.  Iacovitti

233 South 10th Street
BLSB, 322
Philadelphia, PA 19107

(215) 955-8118
(215) 955-2993 fax

Medical School

B.S., Monmouth College, (Biology) - 1973
Ph.D., Cornell University Medical College, (Neurobiology) - 1979
Post-Doctoral, Washington University-St. Louis, (Anatomy & Neurobiology) - 1979-81

Research and Clinical Interests

Neurodegenerative Diseases, Stem Cells, Parkinson's Disease

Research in my laboratory is aimed at understanding how neurons differentiate into dopamine neurons during development of the brain and how that information may be useful for the treatment of neurodegenerative diseases such as Parkinson's. A major goal of our studies has been defining the key fate determinant genes and lineage stages in the development of human dopamine neurons. Our hope is that an understanding of those mechanisms that first direct expression of neurotransmitter genes during differentiation will provide a molecular blueprint that can be used to intentionally target the differentiation of cells, such as human embryonic stem or precursor cells, toward that phenotype. Using an approach that combines cell culture and genetic engineering, our aim is to induce dopaminergic traits in human stem/progenitor cells and devise ways to amplify and purify prospective human dopamine neurons for study after transplantation into rat and monkey models of Parkinson's disease.

In our laboratory, we use a multidisciplinary approach, employing tissue culture (primary and cell lines), molecular (qPCR, microarray, gene cloning, transfection, transduction), anatomical (immunocytochemistry, confocal) biochemical (HPLC), surgical (stereotaxic brain surgery, arterial occlusion), imaging (PET, spect) and behavioral (sensory and motor skills tests).

The overall goal of our studies is take what we have learned about the differentiation of dopamine neurons from human stem cells and translate that into a cell replacement treatment for Parkinson's disease.


Most Recent Peer-Reviewed Publications

  1. Stepwise impairment of neural stem cell proliferation and neurogenesis concomitant with disruption of blood-brain barrier in recurrent ischemic stroke
  2. Regional microglia are transcriptionally distinct but similarly exacerbate neurodegeneration in a culture model of Parkinson's disease
  3. Robust kinase- and age-dependent dopaminergic and norepinephrine neurodegeneration in LRRK2 G2019S transgenic mice
  4. Delayed Accumulation of H3K27me3 on Nascent DNA Is Essential for Recruitment of Transcription Factors at Early Stages of Stem Cell Differentiation
  5. Structure of Nascent Chromatin Is Essential for Hematopoietic Lineage Specification
  6. The versatility of RhoA activities in neural differentiation
  7. Fumarate modulates the immune/inflammatory response and rescues nerve cells and neurological function after stroke in rats
  8. Cell-to-Cell Transmission of Dipeptide Repeat Proteins Linked to C9orf72-ALS/FTD
  9. N-Acetyl cysteine may support dopamine neurons in Parkinson's disease: Preliminary clinical and cell line data
  10. Neuroprotection: Basic mechanisms and translational potential
  11. Classic and novel stem cell niches in brain homeostasis and repair
  12. Neurogenesis is enhanced by stroke in multiple new stem cell niches along the ventricular system at sites of high BBB permeability
  13. A stem cell-derived platform for studying single synaptic vesicles in dopaminergic synapses
  14. Stem cell therapy for glaucoma: Science or snake oil?
  15. The hTH-GFP reporter rat model for the study of Parkinson's disease
  16. Evolutionary conservation of an atypical glucocorticoid-responsive element in the human tyrosine hydroxylase gene
  17. BMP and TGF-Β pathway mediators are critical upstream regulators of Wnt signaling during midbrain dopamine differentiation in human pluripotent stem cells
  18. Tracking Transplanted Bone Marrow Stem Cells and Their Effects in the Rat MCAO Stroke Model
  19. Gremlin is a novel VTA derived neuroprotective factor for dopamine neurons
  20. Changes in host blood factors and brain glia accompanying the functional recovery after systemic administration of bone marrow stem cells in ischemic stroke rats